FAR BEYOND

MAT122

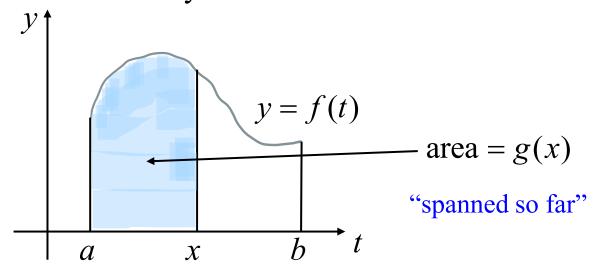
Fundamental Theorem of Calculus (FTC)

Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus establishes a connection between differential calculus and integral calculus. They are inverse processes.

FTC Part 1:
$$\int_a^x f(t)dt = g(x)$$
 where f is continuous on [a, b].

If f is a positive function then g(x) can be interpreted as the area under the graph of f from a to x where x can vary from a to b.

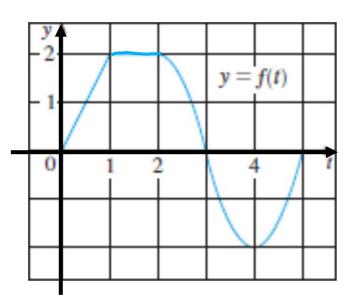


i.e., g(x) is an antiderivative of f:

$$g'(x) = f(x)$$

for
$$a < x < b$$

FTC Part 1 - Example



graph is represented by $g(x) = \int_0^x f(t)dt$

Find value of
$$g(0) = \int_0^0 f(t)dt = \boxed{0}$$

Find value of
$$g(1) = \int_0^1 f(t)dt = A_{\Delta} = \frac{1}{2}(1)(2) = \boxed{1}$$

Find value of
$$g(2) = \int_0^2 f(t)dt = A_{\triangle} + A_{\Box} = 1 + (1)(2) = \boxed{3}$$

Find value of
$$g(3) = \int_0^3 f(t)dt = \int_0^2 f(t)dt + \int_2^3 f(t)dt$$

= 3 + ~ 1.3 = 4.3

Find value of
$$g(4) = \int_0^3 f(t)dt + \int_3^4 f(t)dt$$

$$= 4.3 + -1.3 = \boxed{3}$$

Find value of
$$g(5) = g(4) + \int_4^5 f(t)dt$$

$$= 3 + -1.3 = \boxed{1.7}$$

Differentiating an Integral

ex. Find the derivative of $g(x) = \int_0^x \sqrt{1+t^2} dt$ since f(t) is continuous on $x \ge 0$ then, by FTC Part 1,

$$g'(x) = \sqrt{1 + x^2}$$

ex. Find
$$S'(x)$$
 when $S(x) = \int_0^x 7t^3 dt$

 $7t^3$ is continuous everywhere

$$\therefore S'(x) = 7x^3$$

FTC Part 1:

$$\int_{a}^{x} f(t)dt = g(x)$$

where f is continuous

Differentiating an Integral with Chain Rule

When upper bound is not a simple variable "x", chain rule is necessary.

ex. Find
$$\frac{d}{dx} \int_{1}^{x^{4}} \ln t \, dt$$

note: can be any constant

let $x^{4} = u : \frac{d}{dx} \int_{1}^{u} \ln t \, dt$

$$\frac{d}{du} \int_{1}^{u} \ln t \, dt \cdot \frac{du}{dx}$$

$$\frac{d}{du} \left(\int_{1}^{u} \ln t \, dt \right) \cdot \frac{du}{dx}$$

plug in u
 $\ln u \cdot \frac{du}{dx}$ plug back in for x

$$\ln x^{4} \cdot 4x^{3} = 4x^{3} \ln x^{4}$$

Chain Rule without u-substitution

When upper bound is not a simple variable "x", chain rule is necessary.

ex. Find
$$\frac{d}{dx} \int_{7}^{x^2} (3+t^2) dt$$
ignore
$$= \left(\int_{7}^{x^2} (3+t^2) dt \right) \cdot (x^2)$$

$$= \left(3 + \left(x^2 \right)^2 \right) \cdot 2x$$
simplify
$$= \left[2x \left(3 + x^4 \right) \right]$$

FTC with Negation

ex. Find the derivative of
$$\int_{x}^{\pi} \sqrt{1 + e^{t}} dt$$
 constant is upper bound

$$= -\int_{\pi}^{x} \sqrt{1 + e^{t}} dt$$

$$= \sqrt{1 + e^x}$$

negate

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

switch a and b

FTC with Variables in Both Bounds

both bounds are variables

ex. Find the derivative of $\int_{2x}^{3x} \frac{u^2 - 1}{u^2 + 1} du$ break into two integrals:

$$= \int_{2x}^{0} \frac{u^2 - 1}{u^2 + 1} \ du + \int_{0}^{3x} \frac{u^2 - 1}{u^2 + 1} \ du$$

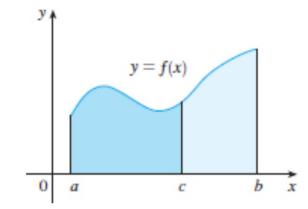
$$= -\int_0^{2x} \frac{u^2 - 1}{u^2 + 1} du + \int_0^{3x} \frac{u^2 - 1}{u^2 + 1} du \quad \text{plug in } 2x, 3x$$

$$= -\frac{(2x)^2 - 1}{(2x)^2 + 1} \cdot 2 + \frac{(3x)^2 - 1}{(3x)^2 + 1} \cdot 3$$

$$= \frac{3(9x^2 - 1)}{9x^2 + 1} - \frac{2(4x^2 - 1)}{4x^2 + 1}$$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

distribute squares



FTC - Do

Do: Find the derivative of $\int_{x^3}^1 \sqrt{7t^2 - 3t + 6} \ dt$

Do: Find the derivative of $\int_{4x}^{9x} \ln t \ dt$